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Abstract. A neural network with correlated attractorsà la Griniastyet al (1993 Conversion of
temporal correlations between stimuli to spatial correlations between attractorsNeural Comp.5
1–17) is studied for a nonmonotonic response function in the cases of both finite and extensive
memory loading. In the finite loading case with symmetric synaptic connections, the number of
neighbouring memory patterns correlated with an attractor tends to be decreased as the degree of
nonmonotonicity is increased. To study the extensive loading case, we generalize the previously
proposed self-consistent signal-to-noise analysis to associative memory models with a general
class of local Hebbian synaptic connections. Applying the results to the present model, we derive
analytic expressions for the equilibrium order parameters. New finding includes the coexistence of
uncorrelated and correlated attractors in the obtained phase diagram. This fact, which is confirmed
by extensive numerical simulations, may have significant implications for long-term visual memory.

1. Introduction

Physiological experiments by Miyashita and Chang [1] reported that neurons in the anterior
ventral temporal cortex of monkeys are highly selective towards a few of 100 coloured fractal
patterns. Further study of the development of selectivity [2] revealed that the temporal
correlations expressed by the serial position number of stimuli during learning are converted
into the spatial correlations of the stored activity patterns. An attractor activity pattern has
correlations with up to five neighbouring attractor patterns in the serial position number. To
account for this temporo–spatial conversion, Griniastyet al [3] proposed a modified Hebbian
learning rule that includes symmetric cross-correlation terms between uncorrelated memory
patterns. Their model consisting of formal two-state neurons, as well as a more realistic version
obtained later [4], succeeded in replicating the correlated attractors obtained by the Miyashita’s
experiments.

In this study, we examine the effects of the symmetric cross-correlation terms in synaptic
connections in the case of nonmonotonic neural networks for both finite and extensive loading
cases. Single neurons display monotonic increases in firing rates as input currents are
increased. However, there are many sources of inhibition in biological neural networks,
and the effective neural processing units comprising a small number of excitatory and
inhibitory neurons possibly exhibit more complicated response profiles. Nonmonotonic
response functions, which represent one of many possible response profiles, are known to
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improve the retrieval performance to a large extent [5–9]. Furthermore, the computational
validity and biological credibility of nonmonotonic neurons were emphasized based on the
history-dependent Bayesian neural dynamics introduced into associative memory [10,11].

In studying the extensive loading case, we extend the previously proposed self-consistent
signal-to-noise analysis (SCSNA) to associative memory models with a general class of local
Hebbian learning rule. The SCSNA provides a powerful method to analyse the associative
memory models. However, the method could be applied only for the classes of simple Hebbian
learning rules. In particular, whether the method can be applicable for the present type
of synaptic connections was not clear due to the finite correlations among attractors. The
phase diagram obtained by the SCSNA reveals an interesting result, namely the coexistence
of uncorrelated and correlated attractors in a certain region of parameter space, which can be
tested by physiological experiments on visual long-term memory. Such a coexistence was also
found for a correlated-attractor model with block-diagonalized synaptic connections [12].

2. Model and analyses

2.1. The definitions of model

We consider anN -neuron network defined by the synaptic connections

Jij = 1

N

p∑
µ,ν=1

Aµνξ
µ

i ξ
ν
j (1)

Aµν = δµν + a1δµ−1,ν + a2δµ+1,ν (2)

with p random memory patternsξµ ∈ {−1, 1}N (µ = 1, . . . , p). Thus the synaptic
connections are decomposed into the terms which are diagonal (auto-correlation terms) or off-
diagonal (cross-correlation terms) in the pattern indices. In the above equations, the memory
patterns are to be cyclically identified. The time evolution equations for the output variables
xi of neurons are given by

dxi
dt
= −xi + F(hi) i = 1, . . . , N (3)

whereF denotes an end-cutoff nonmonotonic response function defined by [6]

F(x) =


1 0< x < θ

−1 −θ < x < 0

0 |x| > θ

(4)

andhi is the local field for theith neuron,

hi =
∑
j 6=i

Jij xj . (5)

In equation (2), the auto-correlation term, i.e. the first term, describes pattern recall and tends to
stabilize each memory pattern under the dynamics defined by equation (3). On the other hand,
the cross-correlation terms, i.e. the second and third terms, describe sequence processing in
which the magnitudes ofa1 anda2 determine the intensity of flows in two opposite directions,
µ → µ + 1 andµ → µ − 1, in the state space. Griniastyet al [3] studied the fixed-point
attractors when the synaptic connections are symmetric, i.e.a1 = a2 ≡ a, whereas Whyte
et al [13] investigated the sequence retrieval for the asynchronous dynamics whena1 6= a2.
Both studies were made for networks of two-state neurons at finite temperatures. So their
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studies at zero temperature correspond to the present study for a sigmoid response function,
or for θ →∞. Our primary interests concern the effects of nonmonotonicity on the retrieval
of both correlated and Hopfield-type attractors.

2.2. Finite loading case

We introduce 2p sublattices each of which is specified by ap-dimensional vectorX =
(ξ1, . . . , ξp) [14–16]. Since the number of embedded patterns is finite, each sublattice contains
an infinite number of neurons whenN →∞. In the thermodynamic limit, it is easy to derive
the following time evolution equations for the pattern overlapsmµ:

dmµ
dt
= −mµ +

∑
X∈Hp

r(X)ξµF

( p∑
ν=1

mν [ξ
ν + a1ξ

ν+1 + a2ξ
ν−1]

)
(6)

mµ = 1

N

N∑
i=1

ξ
µ

i xi . (7)

HereHp = {−1, 1}p andr(X) denotes the probability thatξi coincides withp-dimensional
vectorX for given neuron. For random memory patterns,r(X) = 2−p. In the numerical
simulations shown later, we primarily solve equation (6) instead of equation (3).

2.3. Extensive loading case: the generalized SCSNA

Assuming that loading rateα = p/N is finite, we derive the order parameter equations that
describe the equilibrium states of equation (3) given by

xi = F
(∑
j 6=i

Jij xj

)
i = 1, . . . , N. (8)

Although the matrixA in equation (1) is assumed to be symmetric for simplicity, the following
results are easily extended to an asymmetric case.

Let eµ be a set ofp-dimensional normalized eigenvectors ofA. We introduce a set of
rotated memory patterns,ξ̄i = (ξ̄1

i , ξ̄
2
i , . . . , ξ̄

p

i ), as

ξi = T ξ̄i (9)

T = (e1, e2, . . . , ep). (10)

Each component̄ξµi is statistically dependent (independent) with respect toµ (i, respectively)
and satisfies the orthogonality condition,

E[ξ̄ µi ξ̄
ν
i ] = δµν. (11)

In terms of the rotated patterns, the synaptic connection in equation (1) is rewritten as

Jij = 1

N

p∑
µ=1

κµξ̄
µ

i ξ̄
µ

j (12)

whereκµ is an eigenvalue of matrixA for eigenvectoreµ. We consider the case where the
equilibrium statex has nonzero overlaps̄mµ = 1

N

∑
i ξ̄

µ

i xi with s rotated memory patterns̄ξ
µ

(µ = 1, . . . , s, s ∼ O(1)).
Following the SCSNA proposed by Shiino and Fukai [6, 17], we can easily obtain the

SCSNA order parameter equation and self-consistency equation for an effective response
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functionY :

m̄µ =
∫

Dz〈ξ̄ µY (z; ξ̄1, ξ̄2, . . . , ξ̄ s)〉ξ̄ (13)

q =
∫

Dz〈(Y (z; ξ̄1, ξ̄2, . . . , ξ̄ s))2〉ξ̄ (14)

U = 1

σ

∫
Dzz〈Y (z; ξ̄1, ξ̄2, . . . , ξ̄ s)〉ξ̄ (15)

Dz ≡ dz√
2π

exp

(
−z

2

2

)
(16)

Y (z; ξ̄1, ξ̄2, . . . , ξ̄ s) = F
( s∑
µ=1

κµξ̄µm̄µ + 0Y(z; ξ̄1, ξ̄2, . . . , ξ̄ s) +
√
αrz

)
(17)

r = q
∫ 1

0
du

κ(u)2

(1− κ(u)U)2 =
q

αN
Tr

(
A2

(I −AU)2
)

(18)

0 = α
∫ 1

0
du

κ(u)2U

1− κ(u)U =
1

N
Tr

(
A2U

I −AU
)

(19)

where 〈· · ·〉ξ̄ implies averaging over the condensed patternsξ̄ = (ξ̄1, ξ̄2, . . . , ξ̄ s). The
eigenvalue functionκ(u) in equations (18) and (19) is defined asκ(µ

p
)κµ for p,N →∞. We

remark that the analytical expressions ofr and0 given by equations (18) and (19) depend only
on the matrixA but not explicitly on the retrieval patternsξ̄ µ. This fact leads to the following

order parameter equations for the equilibrium state having nonzero overlapsmµ = 1

N

∑
i

ξ
µ

i xi

with s original memory patterns:

mµ =
∫

Dz〈ξµY (z; ξ)〉ξ (20)

q =
∫

Dz〈(Y (z; ξ))2〉ξ (21)

U = 1

σ

∫
Dzz〈Y (z; ξ)〉ξ (22)

Y = F(ξ ·Accm + 0Y +
√
αrz) (23)

where 〈· · ·〉ξ implies averaging over the condensed patternsξ = (ξ1, ξ2, . . . , ξ s). In
equation (23),Accis a submatrix ofAacting on thes-dimensional space of condensed patterns.
The vectorsξ = (ξ1, ξ2, . . . , ξ s) andm = (m1, m2, . . . , ms) are defined in the condensed
pattern space. Note that the off-diagonal terms between the condensed and uncondensed
pattern spaces can be neglected, ifs is taken to be sufficiently large.

Since the matrixAµν in equation (2) has a translational invariance with respect to the
pattern indicesµ andν, the eigenvalue functionκ(u) for a1 = a2 = a is given as,

κ(u) = 1 + 2a cos(πu) 06 u < 1.

From the eigenfunctions, we obtain

0 = α
(
− 1

U
+

1

U
√

1− y2
+

1

(1− U)
√

1− y2
− 1

)
y = 2aU

1− U (24)

r = q
[

1

(1− U)2
√

1− y2
+

4a2

(1− U)4(
√

1− y2)3
− 1−

√
1− y2

U2
√

1− y2

]
. (25)
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Figure 1. The number of the memory patterns which have nonvanishing positive overlaps with
a correlated attractor. The synaptic connections are symmetric. For simplicity in making this
diagram in thea–θ plane, a memory pattern is regarded as having a vanishing overlap if the value
of the overlap was less than 2−7. The attractor can be correlated only with a single memory pattern
in the region above the dashed line fora < 0.5 and the region delimited by the dashed lines for
a > 1 (see equations (27), (29) and (30) for details). Above the dot-dashed line AA′ given by
equation (28), the attractor coincides with the correlated attractor obtained for a sigmoid response
function.

3. Results

3.1. The correlated fixed-point attractors in the finite loading case

Here equation (6) is numerically solved under symmetric synaptic connections:a1 = a2 = a.
In a conventional model of two-state neurons at zero temperature, i.e. in the case ofθ →∞,
correlated attractors appear for 0.5 < a < 1 [3]. For a < 0.5 the contributions of the
auto-correlation terms tohi completely determine its sign, thus giving only the Hopfield-type
attractors. Fora > 1, the contributions of the cross-correlation terms tohi dominate those
of the auto-correlation terms, only giving a symmetric attractor. Each correlated attractor
has overlaps with a central memory pattern and four neighbouring memory patterns in both
directions with increasing and decreasing pattern indices. In the present numerical simulations,
the integerp was varied withinp 6 25. Since most of the results were essentially unchanged
for sufficiently large values ofp, the results will be shown only forp = 14. Note that
throughout this paper we count only the central and neighbouring memory patterns in either
direction of pattern indices, whenever we calculate the number of memory patterns having
nonvanishing overlaps with an attractor.

To get some insight into the correlated attractors appearing in the nonmonotonic
neural network, we study the number of memory patterns having nonvanishing positive
overlaps with an attractor, while varying the values ofθ and a. It was shown for
the zero-temperature Ising-type network that the values of overlap are given as [18]
m = (1/27)(0, 0, 1, 3, 13, 51, 77, 51, 13, 3, 1, 0, 0, . . .) for a correlated attractor with central
pattern{ξ7

i }. Therefore, we regard a memory pattern as possessing a finite overlap with an
attractor if the overlap is greater than 2−7 = 0.0078. Here the memory patterns having negative
overlaps are not distinguished from those having vanishing overlaps.

The results are summarized in figure 1. When the value ofθ is sufficiently large, the effects
of nonmonotonicity disappear. In this case, the Hopfield-type attractors which are correlated
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only with one of the memory patterns should be obtained fora < 0.5. Letm1 ≡ m be the only
nonvanishing pattern overlap for a Hopfield-type attractor. Then,mmust satisfy the following
relation which is obtained from (6) by setting dm/dt = 0 andm2 = · · · = mp = 0:

m = 1
4{2F(m) + F((1− 2a)m) + F((1 + 2a)m)}. (26)

The first, second and third terms in parenthesis appear from the sublattices withξ2 = −ξp,
ξ1 = −ξ2 = −ξp andξ1 = ξ2 = ξp, respectively. The equation (26) has a unique solution
m = 1 when the maximum value of the local fields is less than the value ofθ . Thus

m = 1 for θ > 1 + 2a (27)

in the region above the dashed line drawn in figure 1 fora < 0.5. However, whenθ < 1 + 2a,
m = 1 cannot be a solution of (26) any more, since the last term in the right-hand side vanishes
for the values ofm. The behaviour of the attractor in this case will be studied later.

In the case wherea > 0.5, the correlated attractors appear and accordingly the figure
shows complicated behaviours. When 0.5< a < 1, the attractor is correlated with five (i.e. a
central + four neighbouring) memory patterns for(a, θ) located above some line connecting
the points A and A′ (see equation (28) for details). Whena > 1, the attractor of this neural
network approaches a symmetric state correlated with all memory patterns, asθ becomes large
in the region above some curve connecting A′ and A′′. These results are consistent with those
for a sigmoid response function [3, 19]. In contrast, in the region below the curve AA′A ′′,
the model shows complicated behaviour. In this region, the attractor always has nonvanishing
overlaps with more than one memory pattern for 0.5< a < 1. On the other hand, fora > 1 the
attractor has a nonvanishing overlap only with a single memory pattern in the region delimited
by the dashed lines (see equations (29) and (30) for details). Except for this difference, the
figure suggests that the correlated attractor shows similar behaviour for both 0.5< a < 1 and
a > 1. However, as we will see below, this is not indeed the case.

To see the differences in the behaviour of the correlated attractor in the three cases that
a < 0.5, 0.5 < a < 1 anda > 1, the distributions of pattern overlaps over memory patterns
are numerically calculated by varying the value ofθ . The results are shown in figures 2(a)–(c)
for a = 0.25, a = 0.9 anda = 1.1, respectively. In all of the figures, the attractor which is
maximally correlated with{ξ7

i } is shown.
Figure 2(a) proves that fora < 0.5 the attractor is correlated only with a single memory

pattern as far asθ > 1 + 2a = 1.5, as was shown in (27). As the value ofθ is decreased below
this critical line, the attractor starts to have negative or positive overlaps with other memory
patterns.

Figures 2(b) and (c) show clear differences in the behaviour of correlated attractors for
0.5 < a < 1 anda > 1. In the case wherea = 0.9, the shape of the distribution changes
moderately asθ is decreased or the nonmonotonicity is increased. The correlated attractor at
any value ofθ has nonvanishing overlaps with a relatively small number of memory patterns,
which is usually less than or equal to five. The critical line AA′, above which the correlated
attractors coincide with those obtained for a sigmoid response function, is easily obtained.
As shown previously, the values of pattern overlaps for the correlated attractors are given as
m = (1/27)(0, 0, 1, 3, 13, 51, 77, 51, 13, 3, 1, 0, 0, . . .) [18]. Then the local fields given by
equation (5) take the maximum value(1+2a)(1+3+13+51+77+51+13+3+1)/27 = (1+2a) 213

128
in the sublattices withξ3 = ξ4 = · · · = ξ11 = 1. To have the same correlated attractors as
obtained for a sigmoid response function, this maximum value should be less than the value
of θ . Thus the critical line AA′ is given by

θ = 213
64 a + 213

128 0.5< a < 1. (28)
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Figure 2. The overlap distributions over memory patterns for various values ofθ , when (a)
a = a1 = a2 = 0.25, (b) 0.9 and (c) 1.1. The total number of embedded memory patterns is given
by p = 14.

In contrast to the above case, when the shape of the distribution changes dramatically at
some values ofθ , as its value is decreased from a large value. The first dramatic change in the
shape occurs in the neighbourhood ofθ ≈ 5, when the value ofθ crosses the curve A′A ′′ in
the diagram shown in figure 1. Near this value ofθ , the width of distribution, or the number
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Figure 2. (Continued)

of memory patterns correlated with the attractor, is decreased rapidly. Below this value, the
shape of distribution does not show significant changes untilθ ≈ 0.6, except the changes that
occur in the neighbourhood ofθ ≈ 2. Nearθ ≈ 0.6, the attractor begins to be correlated
only with the central memory pattern, which results in a rapid increase in the peak height of
the distribution. This behaviour can be understood from equation (26) as follows. Note that
1− 2a < 0 for a > 1. If 1 − 2a < −θ , m = 1

2 can be a solution to equation (26) with
F(m) = 1, and it remains to be a solution as far asθ > 1

2. Thus,

m = 1
2 for 1

2 < θ < a − 1
2 . (29)

For θ < 1
2, the equation 2m = F(m) must be satisfied, and a solution is given by

m = θ. (30)

For very small values ofθ , the numerically-obtained attractors exhibited the oscillatory
instabilities around the values given above.

The above results fora = 0.9 anda = 1.1 reveal that a retrieval state of the neural
network exhibits quite different behaviours for 0.5< a < 1 anda > 1. They also reveal that
the complicated features shown in the region of figure 1 below the curve AA′A ′′ are just the
artifact arising from the criteria employed for finding nonvanishing overlaps. It is noted that
for a highly nonmonotonic response function with a small value ofθ , the retrieval state can
be correlated only with a single memory pattern whena > 1, whereas it is always correlated
with more than one memory patterns when 0.5< a < 1.
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Figure 3. The phase diagram obtained analytically by SCSNA for
s = 13. The solid curve represents the capacities for the Hopfield-
type attractors, while the dashed curve those for the correlated
attractors.

Figure 4. The results of numerical simulations are shown in terms of pattern overlaps for (a)
Hopfield-type attractors and (b) correlated attractors ata = 0.4. The central pattern which has the
largest overlap with the attractors is given by{ξ7

i }. The dashed curves represent the values obtained
theoretically by SCSNA.

3.2. Phase diagram in the extensive loading case

To obtain the phase diagram, we solve equations (20)–(25) numerically, while varying the
values ofa and α. In the finite loading case, the nonmonotonicity of response function
resulted in the occurrence of negatively-correlated attractors below the lineθ = 1 + 2a for
a < 0.5. It will be interesting to see whether the retrieval properties qualitatively change
when the parameter values across this line in the(a, θ) space in the extensive loading case.
Therefore the value ofθ is fixed asθ = 1.5. The resultant phase diagram is shown in figure 3
for s = 13. Several results shown in this phase diagram are expected from those obtained
for a sigmoid response function: (i) the correlated attractors exist only fora < 1; (ii) the
uncorrelated Hopfield-type attractors exist only fora < 0.5; (iii) outside the above two types
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Figure 4. (Continued)

of retrieval phases are the spin glass states. Besides the spin glass states, a symmetric state
in which all memory patterns are symmetrically mixed appears for finites. However, the
state is not presented in the phase diagram since it should not appear at the limits → ∞;
(iv) the memory capacities for the correlated attractors are much smaller than those for the
Hopfield-type attractors. Also the capacities for the Hopfield-type attractors are enhanced by
the nonmonotonicity of response functions [6].

However, the phase diagram in figure 3 exhibits a qualitatively different feature which was
not shown in [19]. Namely, the Hopfield-type and correlated attractors coexist fora < 0.5.
This coexistence of different attractors has been found also for a sigmoid or step-function-like
response function (results not shown). In numerically solving the order parameter equations for
a < 0.5, the convergence to the correlated-attractor solutions is very sensitive to the choices of
initial values for iterations. Therefore these solutions could easily be missed in the numerical
analysis.

To confirm the above results of analytic studies, we conducted numerical simulations for
several cases. Since the critical loading rate can be rather small for the correlated attractors,N

should be, in general, taken to be very large numbers. We employed a maximum of 350 000
neurons in the simulations. For this value ofN , s = 13 corresponds only to 3.7% of the
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critical pattern numberαcN atαc = 0.001. Figure 4(a) shows the values of pattern overlaps
for the Hopfield-type attractors ata = 0.4, when the target pattern is{ξ7}. It is clear from
the figure that the numerically obtained values coincide well with those obtained theoretically
(dashed curves) forα < αc. At α = αc, the numerically obtained values rapidly jump, which
signals the occurrence of phase transition. In figure 4(b), the results for the correlated attractors
are shown ata = 0.4. The presence of the attractors belowα ≈ 0.017 is clearly seen from
the figures, which further proves the good coincidence between the theoretical and numerical
results. Thus, the results of numerical simulations confirm the coexistence of correlated and
Hopfield-type attractors fora < 0.5.

4. Conclusion

In the present paper, we have investigated the properties of the correlated attractors in an
associative memory model with a nonmonotonic response function in the cases of both finite
and extensive memory loading. For a finite number of memory patterns, we have shown that the
number of memory patterns correlated with an attractor can change dramatically with the degree
of the nonmonotonicity. For an infinite number of memory patterns, we have extended the
applicability of the self-consistent signal-to-noise analysis and derived the analytic expressions
for order parameters. The phase diagram obtained from the analysis revealed the coexistence of
the Hopfield-type attractors and correlated ones fora < 0.5, when the loading rateα is small.
Since this coexistence was also found for a sigmoid response function, and the correlated-
attractor neural network was originally proposed as a model of long-term visual memory in
the monkey infero-temporal area, it seems interesting to examine whether the two different
types of attractors indeed coexist in the brain area.
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